Pairs and triplets of entangled microwave photons

Carlos Sabín Junior Leader Researcher, IFF (CSIC)

Residencia de Estudiantes, 8/11/2019

In collaboration with...

Chalmers University of Technology Göran Johansson group (Theory) Per Delsing group (Experiment)

University of Waterloo Chris Wilson group (Experiment) **Dynamical Casimir Effect**

PARTICLES OUT OF THE VACUUM!

DCE physical realisation : superconducting circuits

Coplanar waveguide - a transmission line for ID microwave photons

SQUID

superconducting loop

interrupted by two

Josephson junctions.

Can be used as a

tunable inductor.

Dynamical Casimir Effect

C.M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori and P. Delsing, Nature (2011)

PAIRS OF ENTANGLED PARTICLES

Dynamical Casimir Effect

PARTICLES OUT OF THE VACUUM!

DCE ENTANGLES ARTIFICIAL ATOMS

Simone Felicetti et al. PRL 113, 093602 (2014)

Quantum correlations vs oscillation amplitude D. N. Samos-Saénz de Buruaga & C.S. Phys. Rev. A 95, 022307 (2017) C. S, I. Fuentes, G. Johansson, Phys. Rev A 92, 012314 (2015). C.S. ,G.Adesso Phys. Rev. A 92, 042107(2015)

BOSON SAMPLING

B. Peropadre, C. S, J. Huh Sci. Rep. 8, 3751 (2018)

Multimode parametric amplification of the vacuum

O Multimode quantum correlations!

O Bipartite and tripartite entanglement out of the vacuum via DCE!

 $\phi = \sum_{n} \phi_n a_n + \phi_n^* a_n^{\dagger} \longrightarrow \hat{\phi} = \sum_{n} \hat{\phi}_n b_n + \hat{\phi}_n^* b_n^{\dagger}$ Creation and annihilation operators $b_n = \sum \alpha_{mn}^* a_n + \beta_{mn}^* a_n^{\dagger}$ C Effective hamiltonian cavity with time-dependent length m $H_{\text{eff}} = \sum_{n} \omega_n(t) \left(a_n^{\dagger} a_n + \frac{1}{2} \right) + \frac{L(t)}{L(t)} \sum_{n} \sum_{i \neq n} \left(\sum_{n \neq i} \frac{1}{2} \right) dt$ modeparticle mixing creation $\times (-1)^{n+j} \frac{jn}{j^2 - n^2} \sqrt{\frac{n}{j}} (a_n^{\dagger} a_j^{\dagger} + a_n^{\dagger} a_j - a_n a_j^{\dagger} - a_n a_j),$ two-mode beam squeezing splitter

Multimode parametric amplification of the vacuum

$$H_{\text{eff}} = \sum_{n} \omega_n(t) \left(a_n^{\dagger} a_n + \frac{1}{2} \right) + \frac{\dot{L}(t)}{L(t)} \sum_{n} \sum_{j \neq n} \sum_{j \neq n} \left(-1 \right)^{n+j} \frac{jn}{j^2 - n^2} \sqrt{\frac{n}{j}} \left(a_n^{\dagger} a_j^{\dagger} + a_n^{\dagger} a_j - a_n a_j^{\dagger} - a_n a_j \right),$$

two-mode beam squeezing splitter $L(t) = L(1 + \delta \sin \omega t)$

•

$$\delta \ll 1 \to \frac{L}{L} \simeq \delta \omega \cos \omega t$$

Pump ("mirror") frequency:
$$\omega = \omega_a + \omega_b$$

two-mode squeezer modes a-b

$$\omega = |\omega_a - \omega_b|$$

beam-splitter modes a-b

Multimode parametric amplification of the vacuum

Pump ("mirror") frequency:
$$\omega = \omega_a + \omega_b$$
 two-mode squeezer
modes a-b beam-splitter modes a-b beam-splitter modes a-b

Sequential application of different frequencies to get sequences of two-mode squeezers and beam-splitters.

Simultaneous application of several frequencies

DCE physical realisation : superconducting circuits

O Paraoanu's group in Finland

O Multimode quantum correlations!

nature

ARTICLE

Received 12 Nov 2015 | Accepted 11 Jul 2016 | Published 26 Aug 2016

DOI: 10.1038/scomms12548

OPEN

Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity

Pasi Lähteenmäki¹, Gheorghe Sorin Paraoanu¹, Juha Hassel² & Pertti J. Hakonen¹

Multimode entangled microwaves

• Bisqueezing scheme: $f_{p1} = f_1 + f_2$ $f_{p2} = f_2 + f_3$

Coupled modes scheme	э:
$f_{p1} = f_1 + f_2$	
$f_{p2} = f_3 - f_1 $	

	Frequer	ncies	Entanglement Measures				
Scheme	Modes	Pumps	$ ilde{ u}_{ m min}$	\mathcal{N}^{tri}	S		
CM	4.20, 6.16, 7.55	10.36, 3.35	$0.48 \pm 0.002, 0.39 \pm 0.002, 0.57 \pm 0.002$	0.73 ± 0.005	1.49 ± 0.01		
BS	4.20, 6.16, 7.55	10.36, 11.75	$0.31 \pm 0.003, 0.48 \pm 0.004, 0.39 \pm 0.004$	0.94 ± 0.012	1.19 ± 0.01		

O Multimode quantum entanglement!

C. W Sandbo Chang, M. Simoen, J. Aumentado, C. S. et al. Phys. Rev. Appl. 10, 044019 (2018).

Third order processes

O Transmission line terminated by asymmetric SQUID $E_{J,1} \neq E_{J,2}$

Interaction Hamiltonian

Asymmetry in the SQUID

•
$$E_{SQ} = E_J(\Phi_{ext})\cos\left(2\pi\frac{\Phi_{cav}}{\Phi_0} - \alpha(\Phi_{ext})\right)$$

- asymmetry gives a flux dependent offset $\alpha(\Phi_{ext})$ to Φ_{cav}
- this gives us access to the cubic term
- > Third-order SPDC Hamiltonians

Single Mode:
$$\widehat{H}_{int} = \hbar g \left(\widehat{a}^3 + \widehat{a}^{\dagger 3} \right)$$

$$\omega = \omega_a + \omega_b + \omega_c$$

Three Mode: $\hat{H}_{int} = \hbar g (\hat{a}\hat{b}\hat{c} + \hat{a}^{\dagger}\hat{b}^{\dagger}\hat{c}^{\dagger})$

SPDC	Combinations	Frequency [GHz]]	Effective Hamiltonians
		Pump	${\rm Mode}\ 1$	${\rm Mode}\ 2$	Mode 3	
Single-mode	$f_{p1} = 3 \times f_1$	12.6	4.2	-	-	$\hat{H}_{1\mathrm{M}} = \hbar g \left(\hat{a}_1^3 + \hat{a}_1^{\dagger 3} \right)$
Two-mode	$f_{p2} = 2 \times f_1 + f_2$	14.5	4.2	6.1	-	$\hat{H}_{2M} = \hbar g \left(\hat{a}_1^2 \hat{a}_2 + \hat{a}_1^{\dagger 2} \hat{a}_2^{\dagger} \right)$
Three-mode	$f_{p3} = f_1 + f_2 + f_3$	17.8	4.2	6.1	7.5	$\hat{H}_{3M} = \hbar g \left(\hat{a}_1 \hat{a}_2 \hat{a}_3 + \hat{a}_1^{\dagger} \hat{a}_2^{\dagger} \hat{a}_3^{\dagger} \right)$

C.W. Sandbo Chang, F. Quijandria, C. S, G. Johansson, C. Wilson et al. (to appear in PRX)

Third order processes

A. Agustí, C. S, G. Johansson, C. Wilson et al. (in progress)

T=10 mk T=30 mk

g = 0.01 GHz

g = 0.05 GHz

tratestary day all the

(catco)=/ (NaMD 4.802)

testest - Challen white

[colors] - Chan all the second states and second sec

time (nc)

30

32

0.05

0.04

0.03

0.02

0.01

0.00

g = 0.1 GHz

Conclusions

- DCE as a useful resource for QTs: bipartite and multipartite quantum correlations
- Multimode parametric amplification of the quantum vacuum.
- Two different notions of multipartite entanglement emerge: gaussian entanglement with double SPDC or non-gaussian with three-mode SPDC.

