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Dynamical Casimir Effect

Particles out of the 
vacuum!



DCE physical realisation : superconducting circuits

Coplanar waveguide - a 
transmission line for 
1D microwave photons

S Q U I D - 
superconducting loop 
interrupted by two 
Josephson junctions. 
Can be used as a 
tunable inductor.
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Dynamical Casimir Effect

Particles out of the vacuum!

Pairs of entangled Particles

Quantum correlations vs oscillation amplitude
D. N. Samos-Saénz de Buruaga & C.S. Phys. Rev. A 95, 022307 (2017)
C. S, I. Fuentes, G. Johansson, Phys. Rev A 92, 012314 (2015).
C.S. ,G.Adesso Phys. Rev. A 92, 042107(2015)

DCE ENTANGLES Artificial 
Atoms

Simone Felicetti et al. PRL 113, 093602 (2014) 
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 Bipartite and tripartite entanglement out of the vacuum via DCE!

 Multimode quantum correlations!
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FIG. 1. Probability of excitation for a qubit which is initially in the
ground state and follows trajectories xq (t) = π

2 + π
2 cos ω t (crosses)

and xq (t) = ω
ω0

c t (dashed curves), with g = 0.02 for the dotted
curves and g = −2 J1(π/2)0.02 for the dashed ones. The curves
always superpose, showing the excellent accuracy of the approxima-
tion in Eq. (7). The frequencies are ω = 2ω0 and ωq = ω0/2 (green),
ωq = 0.9ω0 (red), and ωq = ω0 (blue). Therefore, in all cases v = 2 c,
but only the blue curves represent the resonance ω = ωq + ω0. The
qubit decay parameters are # = 0.002 and T2/T1 = 0.67, and we
consider two cavity decay rates: (a) κ = 0.001 and (b) κ = 0.1
(bad-cavity limit), in units of ω.

its excited state [21]. To retrieve the qubit states, one may
use auxiliary resonators with dispersive microwave drivings
to perform projective measurements of the qubits in the
computational basis [22].

III. A MIRROR MOVING AT SUPERLUMINAL SPEEDS

Now we will consider a different scenario, where a mirror
moves at superluminal speeds. It has been shown that the
motion of optical boundaries [23,24] or the perturbation of
the refractive index [5] at constant and superluminal speeds
generates photons out of the vacuum. This phenomenon
somehow resembles the DCE, but it is radically different:
There is no acceleration and it only appears at superluminal

speeds. Moreover, it is also different from the Cerenkov effect,
which requires the presence of a charge and is classical.

Although the DCE with oscillating motion is the most
conspicuous example, other instances of boundary motion
have been considered in the literature [25– 28]. However,
the case of a mirror moving at superluminal speeds remains
unexplored.

The DCE was observed in an open microwave coplanar
waveguide interrupted by a single superconducting quantum
interference device (SQUID) operated well below its plasma
frequency [11]. Under the latter condition, the SQUID im-
plements an effective mirror-like boundary condition for the
superconducting flux field, which can be described by a
standard quantum one-dimensional (1D) bosonic field. The
effective position of the boundary condition depends on the
particular value of the magnetic flux threading the SQUID and
thus its ultrafast variation amounts to motion of the mirror
at relativistic speeds, which generates a two-mode squeezing
operation on the field propagating along the transmission line.
The DCE can be produced as well for different boundary
conditions, such as the ones of a superconducting resonator
interrupted by one [29] or two SQUIDs [30]. In general, it
will appear in a cavity with time-dependent length, where the
variation of the length takes place at relativistic speeds.

We consider now a 1D cavity of time-dependent length. In
particular, let us assume that the cavity has a fixed length L
until t = 0 and then the length changes in time, L(t). The
effective Hamiltonian for this system has been derived in
Refs. [31,32]:
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where
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L(t)
, (13)

and L̇(t) is the time derivative of L(t).
In the DCE implementation, a constant dc flux field is

modulated through a small harmonic ac field of frequency
ωd . This results in an effective harmonic motion of the mirror
characterized by a small oscillation amplitude. Considering
L(t) = L(1 + δ sin ωd t) with δ ≪ 1, it is straightforward
to realize that L̇(t)

L(t) ≃ vmax cos ωd t , which in the interaction
picture leads to two-mode squeezing proportional to vmax if
ωd = ωk + ωj . Therefore, the DCE is a particular case of the
model embodied by Eq. (12).

However, the achievable mirror velocities in the celebrated
circuit quantum electrodynamics (circuit QED) implementa-
tion of the DCE are severely limited [11]. In particular, the
maximum velocity of the harmonic motion is vmax = δLeff ωd ,
where δLeff is the amplitude of the oscillation. ωd needs to
be well below the SQUID plasma frequency, which typically
means ωd < 20 GHz—it was 10 GHz in Ref. [11]. Moreover,
the SQUID-mirror equivalence only works if kω Leff ≪ 1,
namely Leff must be smaller than the relevant wavelengths.
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ω = ωa + ωbPump (“mirror") frequency: two-mode squeezer 
modes a-b

ω = |ωa − ωb | beam-splitter modes 
a-b

L(t) = L(1 + δ sin ωt)

δ ≪ 1 →
·L
L

≃δω cos ωt

Multimode parametric amplification of the vacuum



Pump (“mirror") frequency: two-mode squeezer 
modes a-b

ω = |ωa − ωb | beam-splitter modes 
a-b

ω = ωa + ωb

 Two options:

      Sequential application of different frequencies to get sequences of two-mode 
squeezers and beam-splitters.

 Simultaneous application of several frequencies  eA+ B ≠eAeB

 Extra interactions

Multimode parametric amplification of the vacuum



 Theory: D. E. Bruschi, C. S. G. S. Paraoanu,  
PRA  (2017)

 Multimode quantum correlations!

 TMS

 BS

 Paraoanu’s group in Finland
DCE physical realisation : superconducting circuits



4.2
4.0
3.8

-0.5 0.0 0.5
Flux [Φ0]

6.2
6.0
5.8

Fr
eq

ue
nc

y 
[G

H
z]

7.6
7.4
7.2

 f1

 f2

 f3
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C. W Sandbo Chang, M. Simoen, J. Aumentado, C. S. et al. Phys. Rev. Appl. 10, 044019 
(2018).

 Multimode quantum entanglement!

 Bisqueezing scheme: 

fp1 = f1 + f2
fp2 = f2 + f3
 Coupled modes scheme: 

fp1 = f1 + f2
fp2 = | f3 − f1 |

4

Frequencies Entanglement Measures

Scheme Modes Pumps ⌫̃min N tri S

CM 4.20, 6.16, 7.55 10.36, 3.35 0.48± 0.002, 0.39± 0.002, 0.57± 0.002 0.73± 0.005 1.49± 0.01

BS 4.20, 6.16, 7.55 10.36, 11.75 0.31± 0.003, 0.48± 0.004, 0.39± 0.004 0.94± 0.012 1.19± 0.01

TABLE I: Entanglement measures and frequencies for the various pumping schemes. CM is the coupled-mode scheme. BS is
the bisqueezing scheme. The Frequencies columns list the respective mode and pump frequencies. The ⌫̃min column reports the
minimum symplectic eigenvalues for all three bipartition from the PPT tests. The N tri column reports the tripartite negativity.
The S column reports the measure of genuine tripartite entanglement in Eq. 2. The entanglement conditions are ⌫̃min < 1; N > 0;
and S < 2. Statistical errors are reported. See the Supplemental Material for a discussion of systematic error [37]. We find full
inseparability and genuine tripartite entanglement for both entanglement schemes.

an erroneous claim of entanglement. It is therefore criti-
cal to characterize Ti [47]. Assuming the mode is in the
vacuum state is tantamount to assuming that the system
is entangled. In our setup, the calibration of the system
gain using the SNTJ also gives us the physical electron
temperature of the SNTJ. As detailed in the Supplemental
Material [37], we find values of 25-37 mK over the course
of our measurements. For our working frequencies, these
temperatures are deeply in the quantum regime, giving
coth(hfi/2kBTi) = 1.00 with at least 3 significant figures
for all our measurements.

Estimating the covariances of our modes is easier since
neither the input noise nor system noise is correlated at
di↵erent frequencies. The covariance is then obtained by
simply rescaling the room temperature values as, e.g.,

hx̂ix̂ji =
4hÎiÎjiONp

GiGjfifjZ0hBW
. (4)

As V is symmetric, just 21 terms in the matrix need to be
individually measured for N = 3 modes.

To study the tripartite CM scheme, we measure the 6 x
6 matrix V4,6,7:

0

BBBBBBBBB@

x1 p1 x2 p2 x3 p3

x1 2.05 0.00 1.87 0.00 0.88 0.00

p1 0.00 2.04 0.00 �1.87 0.00 0.88

x2 1.87 0.00 2.85 0.00 1.56 0.00

p2 0.00 �1.87 0.00 2.85 0.00 �1.56

x3 0.88 0.00 1.56 0.00 1.79 0.00

p3 0.00 0.88 0.00 �1.56 0.00 1.79

1

CCCCCCCCCA

.

The correlations are color coded (online) with significant
positive (negative) correlations in blue (red). As reported
in Table I, this state demonstrates both full inseparability
and genuine tripartite entanglement. This is the major
result of this Letter.

For the BS scheme, we have the measured matrix V4,6,7:

0

BBBBBBBBB@

x1 p1 x2 p2 x3 p3

x1 3.91 0.00 2.34 0.00 2.78 0.00

p1 0.00 3.91 0.00 �2.33 0.00 �2.78

x2 2.34 0.00 2.28 0.00 1.45 0.00

p2 0.00 �2.33 0.00 2.28 0.00 1.45

x3 2.78 0.00 1.45 0.00 2.72 0.00

p3 0.00 �2.78 0.00 1.45 0.00 2.72

1

CCCCCCCCCA

.

As shown in Table I, we again find that the state demon-
strates both full inseparability and genuine tripartite en-
tanglement.

The main limitation on the degree of entanglement in
the system seems to be the purity of the output states.
For an ideal system, pumping harder should increase the
degree of squeezing without degrading the purity of the
state, and therefore increase the parametric gain and degree
of entanglement monotonically. We instead see that the
gain increases with pump strength, but the purity of the
states simultaneous declines, limiting the maximum degree
of entanglement. This suggests some form of nonideality
such as higher-order nonlinearities, self-heating, or parasitic
coupling to other cavity modes. These limitations can be
more thoroughly investigated in future work.
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Third order processes

 Transmission line terminated by asymmetric SQUID  EJ,1 ≠EJ,2

C.W. Sandbo Chang, F. Quijandria, C. S, G. Johansson, C. Wilson et al. (to appear in PRX)

ω = ωa + ωb + ωc



  

Third order processes

 Non-gaussian states   Three-mode correlators  

 Non-gaussian multipartite entanglement?  

< IaIbIc >

C.W. Sandbo Chang, F. Quijandria, C. S, G. Johansson, C. Wilson et al. (to appear in PRX)



 Non-gaussian states   Three-mode correlators  

 Non-gaussian multipartite entanglement?  

A. Agustí, C. S, G. Johansson, C. Wilson et al. (in progress)

 Full tripartite entanglement 

  Genuine tripartite entanglement 

Standard criteria are based on two-mode correlators

Fail  to detect entanglement in three-mode SPDC (PRL 120, 043601 (2018))

Need  new criteria based on three-mode correlators!



 Full tripartite entanglement 

  Genuine tripartite entanglement 

T=10 mk T=30 mk

g = 0.01 GHz

g = 0.05 GHz

g = 0.1 GHz



T=10 mk T=30 mk
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g = 0.1 GHz



Conclusions

• DCE as a useful resource for QTs: bipartite and multipartite 
quantum correlations 

• Multimode parametric amplification of the quantum vacuum. 

• Two different notions of multipartite entanglement emerge: 
gaussian entanglement with double SPDC or non-gaussian with 
three-mode SPDC.


